Viscosity approximation methods with a sequence of contractions
نویسندگان
چکیده
The aim of this paper is to prove that, in an appropriate setting, every iterative sequence generated by the viscosity approximation method with a sequence of contractions is convergent whenever so is every iterative sequence generated by the Halpern type iterative method. Then, using our results, we show some convergence theorems for variational inequality problems, zero point problems, and fixed point problems.
منابع مشابه
Viscosity approximation methods for W-mappings in Hilbert space
We suggest a explicit viscosity iterative algorithm for nding a common elementof the set of common xed points for W-mappings which solves somevariational inequality. Also, we prove a strong convergence theorem with somecontrol conditions. Finally, we apply our results to solve the equilibrium problems.Finally, examples and numerical results are also given.
متن کاملConvergence theorems of iterative approximation for finding zeros of accretive operator and fixed points problems
In this paper we propose and studied a new composite iterative scheme with certain control con-ditions for viscosity approximation for a zero of accretive operator and xed points problems in areflexive Banach space with weakly continuous duality mapping. Strong convergence of the sequencefxng dened by the new introduced iterative sequence is proved. The main results improve andcomplement the co...
متن کاملMoudafi’s Viscosity Approximations with Demi-Continuous and Strong Pseudo-Contractions for Non-Expansive Semigroups
Copyright q 2010 Changqun Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We consider viscosity approximation methods with demi-continuous strong pseudo-contractions for a non-expansive semigroup. Strong convergence theo...
متن کاملOptimal coincidence best approximation solution in non-Archimedean Fuzzy Metric Spaces
In this paper, we introduce the concept of best proximal contraction theorems in non-Archimedean fuzzy metric space for two mappings and prove some proximal theorems. As a consequence, it provides the existence of an optimal approximate solution to some equations which contains no solution. The obtained results extend further the recently development proximal contractions in non-Archimedean fuz...
متن کاملSome Results about the Contractions and the Pendant Pairs of a Submodular System
Submodularity is an important property of set functions with deep theoretical results and various applications. Submodular systems appear in many applicable area, for example machine learning, economics, computer vision, social science, game theory and combinatorial optimization. Nowadays submodular functions optimization has been attracted by many researchers. Pendant pairs of a symmetric...
متن کامل